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Abstract 

The dynamic viscosity of mixture, having the uniform suspension of solid particles of nanosized and based 

fluid as a component, depends on the various parameters such as hydrodynamic interaction between the 

particle-particle and particle-base fluid, electroviscous effect, Brownian motion, etc. Numerous theoretical 

models reported to investigate the effects of various parameters on the viscosity of nanofluids. The present 

study reviewed these models and the variation in the dynamic viscosity of nanofluid with respect to the particle 

concentration, particle size, thickness of surrounding boundary layer and temperature is also investigated. Few 

newly developed models based on the artificial neural network, thermodynamic mechanisms are also discussed.  

Keywords: Nanofluid, viscosity, Brownian motion, electroviscous effect, hydrodynamic interaction. 

INTRODUCTION 

With the advancement of nanotechnology, the suspension of nanoparticles in the based fluid is an innovation to 

regulate the properties of prepared mixture as per the requirement of the applications. The primary advantage of 

the nanoparticle suspension is the enhancement in the thermal conductivity, which improves the heating or 

cooling processes. Numerous studies have been conducted on the characterization of nanofluids, including the 

measurement of thermo-physical properties of nanofluids.  

In spite of increment in the thermal conductivity, the suspension of nanoparticles increases the viscosity of the 

mixture also, which affect adversely the cooling or heating processes. An increment in the viscosity of mixture 

due to suspended nanoparticles is comparatively less than the micron sized particles and affects less to fluid 

flow processes (e.g. forced convection) due to very smaller particle size, less than 100 nm. But some processes, 

those not involving the fluid flow, like natural convection, are affected by the increment in the viscosity in case 

of nanoparticle suspensions. Therefore, the viscosity plays a vital role to investigate the heating or cooling 

processes. Abundant studies, theoretical and experimental, have been directed on the prediction or measurement 

of viscosity variation due to nanoparticle dispersion and are summarized herein . 

In the early age of investigations on the viscosity of the suspension, large number of mathematical models were 

presented to correlate the different parameters affected the viscosity of suspension and also have genuine 

significance in present consequence. In the present study, primarily the effect of Brownian motion, 
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hydrodynamic interaction, electroviscous effect, and few newly developed mathematical models are 

investigated and the effect of these parameters on the dynamic viscosity of nanofluid is also discussed. The 

presented mathematical models are given in table 1. 

BROWNIAN MOTION 

In 1827, Robert Brown, a Scottish biologist, notified the zigzag motion of pollen grains in water but did not 

recognise the reason behind the motion. In 1906, Einstein formulated a relation between the Brownian motion 

and size of suspended spherical solid particle based on the kinetic theory and calculated the diffusion 

coefficient for the spherical particle. Einstein (1906) was the first to investigate the influence of the motion of 

the spherical particles on the viscosity of base liquid by using hydrodynamic equations. Einstein’s correlation 

investigated the effect of Brownian motion of solid spherical nanoparticles in the base fluid and was valid for 

only dilute solutions. Einstein also introduced a shape factor, which depended on the shape, rigidity and 

Brownian motion of particles, in his expression and resulted that the coefficient of internal friction for a low 

particle concentration of suspended spherical particles is increased by a fraction which is equal to 2.5 times the 

total volume of the suspended spherical particles in a unit volume. But Kuntiz (1926) was not agreed with the 

Einstein’s equation and set a new expression to compute the viscosity of solution of suspended particles having 

a higher concentration as 50% of solutions of such substances as sugars, glycogen, casein and rubber. To prove 

the accuracy of his expression; he computed the specific volume of solute and found that specific volume 

remains approximately constant for various concentrations of solute. Both Einstein and Kuntiz did not consider 

the interaction between the particles while estimating the viscosity of suspended particles.  

Robinson (1949) extended the Einstein’s equation to determine the viscosity of higher concentration of 

suspended spheres and experimentally investigated the viscosity of suspended glass spheres having a diameter 

of 10-20 microns and different types of base fluids such as motor oil, castor oil, polyethylene glycol, corn syrup 

and sucrose solution. Through experiments, Robinson (1949) observed the similar viscosity of solution to the 

base fluid at low concentrations of glass spheres similar to Einstein’s equation. 

Hinch and Leal (1972) investigated the rheology of a mixture of suspended spherical solid particles of low 

volume concentration in to the base fluid and considered the effect of rotary Brownian motion in shear flow for 

different cases of aspect ratio and dimensionless shear rate λ/D. A decrement in the effective viscosity was 

observed with increasing the shear strength (D/γ) in the transition region. Batchelor (1977) investigated the bulk 

stress in a suspension of interacting rigid spherical particles and derived an explicit expression to evaluate the 

role of Brownian motion for statistically homogeneous suspension. 

HYDRODYNAMIC INTERACTION 

Two type of interactions occurred in the colloidal dispersion, one is Brownian motion between the particle-

particle, and other is hydrodynamic interaction between the dispersed and dispersion medium. The effect of 
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hydrodynamic interaction on the viscosity of the colloidal dispersion was investigated by many researchers. 

Vand (1948) derived the mathematical expression to determine the viscosity of suspended spheres with and 

without considering the interaction between the suspended spheres. Derivation to calculate the viscosity of 

suspended particles without considering the interaction between the particles was similar to the Arrhenius 

formula. Vand (1948) also derived an expression to estimate the viscosity by considering the collisions between 

the suspended spheres caused by shearing motion of liquid with unequal velocity of different lamina, which 

primarily depended upon the concentration of spheres. 

 

 

Table 1: Theoretical models for calculating the dynamic viscosity of solid-particle suspension. 

Reference Theoretical models Outcome 

Einstein 

(1906) 

𝜇

𝜇0

= (1 + 2.5𝜙) 

Model considered the effect of 

Brownian motion and was 

only valid for low 

concentration of solid 

particles 

Kuntiz 

(1926) 

𝜇

𝜇0

= (
1 + 0.5𝜙

(1 − 𝜙)4
) 

Model was used for high 

particle concentration (up to 

50%) 

Robinson 

(1949) 

𝜇

𝜇0

= 1 +
2.5𝜙

(1 − 𝑆′𝜙)
 

Extension of Einstein’s 

equation; for higher 

concentration 

Hinch 

 and Leal 

(1972) 

𝜇

𝜇0

= [1 + 𝜙 {
5

2
+ 𝜖2 (

78

441
+

3

5
(

(6𝐷/𝛾)2

1 + (6𝐷/𝛾)2
))} + ⋯ ] 

Model considered the effect of 

Brownian motion and was 

only valid for low 

concentration of solid 

particles 

Batchelor 

(1977) 

𝜇

𝜇0

= [1 + 2.5𝜙 + 6.2𝜙2] 
Model considered the effect of 

Brownian motion and was 

only valid uniform solution; 

Vand (1948) 

log𝑒
𝜇

𝜇0
= 2.5𝜙 (No interaction b/w particles) 

log𝑒
𝜇

𝜇0
=  

2.5𝜙

(1−𝑄𝜙)
  (Interaction b/w particles) 

𝜇

𝜇0
=  1 + 2.5𝜙 + 7.349𝜙2 + .  . (Collision b/w particles) 

Consider slip mechanism at 

walls for higher 

concentrations and included 

the average fraction of time 

spent in collisions  

Simha 

(1952) 

𝜇

𝜇0

= 1 + 2.5𝜙 + [
125

64𝜙𝑚𝑎𝑥

] 𝜙2 + ⋯ 

Based on cage model; More 

adequate at higher 

concentrations 

Graham 

(1981) 

𝜇

𝜇0

=
9

4
[1 + (

ℎ

2𝑟
)]

−1

[
1

(
ℎ
𝑟

)
−

1

[1 + (
ℎ
𝑟

)]
−

1

[1 + (
ℎ
𝑟

)]
2] + (1

+ 2.5𝜙) 

Based on Einstein work and 

used cell theory to calculate 

the viscosity, valid for entire 

range of concentration; 

Brinkman 

(1952) 

𝜇

𝜇0

=
1

(1 − 𝜙)2.5
 

Assumed the mixture as 

continuum 

Cohen et al. 

(1997) 

𝜇

𝜇0

=  (1 + 2.5𝜙 + 4.59𝜙2) 
Visco-elastic behavior of 

particles was calculated 
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Avsec and  

Oblak 

(2007) 

𝜇

𝜇0

= 1 + (2.5𝜙𝑒) + (2.5𝜙𝑒)2 + (2.5𝜙𝑒)3 + (2.5𝜙𝑒)4 + ⋯ 
Based on statistical approach 

at molecular level and assume 

a liquid layer on nanoparticles 

Masoumi et 

al. (2009) 

𝜇

𝜇0

= 1 +
1

𝜇0

×
𝜌𝑝𝑉𝐵𝑑𝑝

2

72𝐶 (√
𝜋

6𝜙
3

) 𝑑𝑝

 

𝐶 = 𝜇0
−1[(0.09𝑑𝑝 − 0.393) − (1.133𝑑𝑝 + 2.771)𝜙] 

Model considered the effect of 

Brownian motion and function 

of size and concentration of 

suspended particles 

The effect of the average fraction of time, particles spent in collision, on the shear rate was also considered. The 

expressions were valid for a wide range of concentrations of solid particles. Frankel and Acrivos (1967), 

through their asymptotic analysis, resulted in an expression to calculate the maximum attainable concentration 

of the suspended particles in the solution and expressed the high influence of the hydrodynamic interaction 

between the suspended particles on the viscosity rise in comparison of collisions, aggregations and inertial 

effects occurred. Simha (1952) investigated the effect of the spherical shape arrangement of solid particles 

around the central particle, called cells, to the hydrodynamic interaction between the suspended solid spherical 

particles. The viscosity of suspension was increased proportionally with the radius of the cell which was a 

function of particle concentration. Krieger and Dougherty (1959) investigated the non-Newtonian behaviour of 

the suspended rigid spherical particles. A flow equation was formulated based on the mechanism of interactions 

between the suspended neighbouring spherical particles by applying shear rate and a relation was found 

between the viscosity and shear rate. On the basis of work of Einstein (1906) and Frankel and Acrivos (1967), 

Graham (1981) neglected the effect of inertia, Brownian, London-van der Walls and electroviscous effect on 

the viscosity. For the entire range of particle concentrations, an expression to predict the dynamic viscosity was 

developed using the cell theory. For the very dilute and concentrated suspension, the formulated expression is 

reduced to Einstein’s equation (1906) and Frankel and Acrivos’s equation (1967), respectively. 

Brinkman (1952) formulated the expression to evaluate the viscosity of spherical solid particles suspended in 

the fluid by assuming the mixture as a continuum and found increase in viscosity with particle concentration. 

Cohen et al. (1997) investigated the Newtonian viscosity and visco-elastic behaviour of concentrated neutral 

hard-sphere colloidal suspension. An increased effective viscosity was the fraction of colloidal particle pairs in 

interaction when particles collide and exchange the momentum and increases the dissipation. Cheng and Law 

(2003) proposed two expressions to evaluate the effective viscosity of suspended particles in fluid. First, 

without considering the dynamic effects between the particles and fluid, and then extended former to exponent 

formula to evaluate the effective viscosity for high particle concentration up to 35% after considering the inter-

particle collisions and random motion of particles, i.e. Brownian motion. Barthelmes et al. (2003) theoretically 

examined the effect of concentrated suspension (up to 20 %) of non-spherical solid particles and shear rate on 

the transient behaviour due to the size distribution of the nanoparticles and viscosity. The population balance 

modal was considered for the coagulation and fragmentation of suspended particles.  
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ELECTROVISCOUS EFFECT  

When a solid particle is brought in the contact with liquid, particle’s surface acquired a charge due to 

ionization, ion adsorption or ion dissolution. Due to charged particles, counterions experience the attraction 

force towards the surface of the particle, while the co-ions experience the repulsive force away from the 

surface. The occurred charge difference at the surface of the particle and the surrounded liquid leads to the 

formation of double layers of ions, identified as electric double layer (EDL). The EDL consists two layers of 

ions, an inner layer of counterions, known as compact layer or stern layer and outer layer of co-ion. The ions 

are distributed due to the influence of electrical forces and random thermal motion in outer layer, known as 

diffuse layer. Due to the charge difference at the boundary of compact layer and diffuse layer, an electrical 

potential, called zeta-potential, is occurred. Debye length, thickness of the EDL, depends on the inverse of the 

square root of the ion concentration in the liquid and surface potential of the flow boundary.  

Booth (1950) considered the effect of surface charge and electrical double layer on the effective viscosity of 

solid suspension and modified the Einstein’s equation for very dilute suspension and thickness of double layer. 

The effective viscosity of solid suspension increased with the thickness of electrical double layer and the same 

effect tvanished when the radius of the solid particle was large as compared to the thickness of electrical double 

layer. Russel (1976) neglected the effect of hydrodynamic interactions and double layer distortion and 

considered the viscous force on individual particles and Brownian motion of individual suspended particles. He 

estimated the viscosity of suspension by using the secondary electroviscous effect. Natraj and Chen (2002) 

found numerically that viscosity was decreased as the double layer distortion was enhanced due to the 

additional stresses produced by the electrical interaction between the distorted ions and charge on the particle, 

and modification in fluid flow due to electrical body forces associated with charged spheres. Ruiz-Reina et al. 

(2005) developed a theoretical model to investigate the electroviscous effect including hydrodynamic 

interactions between the suspended particles and overlapping of the electric double layers.  For doing so, the 

cell model theory was used by considering the thickness of electric double layer comparable with the inter-

particle distance. Due to higher number of ions in the electric double layer for low zeta potential, more 

distortion of the flow around the particle was occurred and resulted in the increased dissipation energy as well 

as viscosity of suspension and opposite occurred for the high value of zeta potential and distortion of the flow 

reduced. Ohshima (2006) derived an expression for the effective viscosity of the dilute suspension of charged 

mercury drops. The effective viscosity of suspension was estimated to equal to that of uncharged rigid spheres 

at very high zeta potential, and the phenomenon was called as solidification effect.  

Particularly for the nanofluids, the classical and statistical approaches were used to evaluate the physical 

properties of nanofluids in literature. Whereas classical mechanics was not proved a better option for the insight 

in to the microstructure, on the foundation of better insight in the intermolecular and intramolecular interaction 

between the particles, statistical mechanics calculated the physical and thermal properties of nanofluids with a 

good agreement compared to experimental data. 
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Avsec and Oblak (2007) formulated an expression to calculate the dynamic viscosity of nanofluids by 

considering molecular level layering of the liquid on the particle interface and clustering in nanoparticles. An 

effective volume concentration was used based on the thickness liquid layers on the particle interface to 

calculate the viscosity and it was found very good agreement with the experimental results for nanofluids of 

TiO2 and Al2O3 nanoparticles having 27 nm and 13 nm mean diameter, respectively. Masoumi et al. (2009) 

formulated an equation to evaluate the dynamic viscosity of nanofluids as a function of temperature, particle 

diameter, Brownian motion and relative distance between the particles in suspension. The effective viscosity of 

suspension was decreased with temperature for constant particle concentration. 

NEWLY DEVELOPED MODELS 

𝐾𝐸, which depends on the kinetic theory of gases, and the residual 

viscosity ∆𝜇, used to consider the effect of deviation of the effective viscosity from dilute gas condition.  

𝜇 = 𝜇𝐾𝐸 + ∆𝜇 

The residula term of viscosity was estimated as a function of the attraction pressure (𝑃𝑎) and repulsive pressure 

(𝑃𝑟), given as   

∆𝜇 = 𝐾𝑟𝑃𝑟 + 𝐾𝑎𝑃𝑎 + 𝐾𝑟𝑟𝑃𝑟
2 

Here, 𝐾𝑟, 𝐾𝑎, and 𝐾𝑟𝑟 are the friction coefficients based on the temperature. The pressure terms were calculated 

by using the equation of state given by Peng - Robinson (1976) and Esmaeilzadeh – Roshanfekr (2006). Using 

these equations of state, an absolute relative deviations of 2.38 % and 2.46% were observed for the equation of 

state given by Peng - Robinson and Esmaeilzadeh – Roshanfekr, respectively.  Gholami, Vaferi, and Ariana 

(2018) used the artificial intelligence (AI) based various models such as multi-layer perception, radial basis 

function neural network, cascade feedforward neural network, and least square support vector machines, to 

predict the accurate values of dynamics viscosity of nanofluids. Out of all the studied models, the multi-layer 

perception model was found the most accurate to predict the viscosity. Another advantage of the former model 

was the ability of incorporation of mathematical models of fluid dynamics to estimate the pressure drop and 

pumping power. 

Based on the Maxwell – type constitutive equation, a thermodynamic model was presented by the Lebon and 

Machrafi (2018) to predict the viscosity of nanofluid as a function of particle concentration (𝜙), length of mean 

free path (l), radius of the particle (r) and thickness of surrounding layer (h), given as 

In addition to the above discussed viscous models based on the above parameters, few models were also 

presented in the literature based on the different mechanisms and methods. Wei et al. established a model 

to  calculate  the  dynamic  viscosity  of  CuO/ethanol  nanofluid  using  locally  weighted  moving  regression 

(LWMR) method, based on the k-nearest neighbour algorithm. This model predicted precise value of dynamic 

viscosity using the measured values of the viscosity having the uncertainty values. By applying the friction 

theory, Bardool et al. (2019) developed a numerical model to predict the dynamic viscosity of the nanofluids by 

considering the dilute gas viscosity 𝜇
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𝜇 = 𝜇0

1 + 2.5𝜙(1 + ℎ/𝑟)3

1 + 4𝜋2𝜙2(1 + ℎ/𝑟)4(𝑙2/𝑟2)
 

Based on the above relation, it was found that the dynamic viscosity increased with the particle loading and 

decreased with the particle size.  

 

CONCLUSIONS  

In the present study, a detailed review has been conducted on the various mathematical or numerical models 

presented to predict the effective viscosity of the nanofluids. The effect of Brownian motion, electrical double 

layer, particle concentration, shear strength, temperature, hydrodynamic interactions, etc. on the viscosity have 

been discussed in the present work. The effects of various parameters on the viscosity of nanofluids, from 

theoretical studies, are summarized in following. 

 An increment in the viscosity of nanofluid was reported with the concentration of nanoparticles. 

 The effective viscosity of solid suspension was increased with the thickness of electrical double layer 

and the same effect was vanished when the radius of the solid particle was large as compared to the 

thickness of electrical double layer. 

 The viscosity of nanofluids was decreased as the size distribution of dispersed solid particles was 

increased. 

 The decrement in the viscosity of nanofluids was observed with the temperature due to increment in the 

Brownian motion, for constant particle concentration.  

 The viscosity of nanofluids was decreased with increasing the shear strength. 

 The viscosity of nanofluids was decreased as the double layer distortion was enhanced due to the 

additional stresses was produced by the electrical interaction between the distorted ions and charge on 

the particle. 

In present, various mathematical modelling based on the different approaches, such as molecular dynamic 

simulation, etc. is also utilized to predict the viscosity. The advancement in the high-speed computing systems 

support the modelling with the more accurate processes. In future, these approaches with the high-speed 

computing systems can be more helpful to predict the viscosity with more accuracy. 

 

NOMENCLATURE: 

µ Dynamic viscosity of nanofluid 

µ0 Dynamic viscosity of base fluid 

Φ Particle concentration 

dp Diameter of nanoparticles 
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Ρ Density of nanoparticles 

VB Brownian velocity 

H Thickness of the electric double layer 

R Radius of the nanoparticles 

γ/D Dimensionless shear rate 
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